Learn Java By a Turn-Based Game

By Andrea Valente - andrea270872@gmail.com - andval.net

[CHAPTER 1] Programming is expressing myself

| want to (re)make something in on my computer, and because of that | NEED programming.

When | was 10 | used to watch super-robots on TV (Grendizer and Steel Jeeg being my favorites) and
| constantly tried to remake them with LEGO (http://www.lego.com/ ). In the 1980s there were no
specific pieces for making humanoid robots in the basic LEGO sets, so | was progressing in 2 ways:
randomly assembling LEGO to see if | could get some useful features like a moving joint or a
detachable punch rockets; at the same time | was trying to reason on the overall shape of the robots
and re-build them with the available LEGO bricks. The results were kind of comic (looking back now)
but | felt real pride in the exercise, and one of the results of this thinking process was that | went
browsing LEGO boxes in shops looking for the pieces that | needed, instead of looking at the actual
cars or houses that you were supposed to build with the box. Within a few years | put together a
collection of various LEGO bricks in a large drawer in my bedroom: they were my toolbox and raw

materials for my reverse engineering projects.

Grendizer toy Kotetsu Jeeg poster
[source https://starscreamersrants.wordpress.com ] [source https://dk.pinterest.com/pin/471892867179252289/ ]
B ASI Cﬁm'iikiften;,gy 5Jae .

A typical LEGO set (mid—80.§) ' My LEGO Jeeg (early 1980s)
[source http://brickset.com/sets/year-1985 ] [re-created with https.//www.buildwithchrome.com/builder ]



mailto:andrea270872@gmail.com
http://www.lego.com/
https://starscreamersrants.wordpress.com/
https://dk.pinterest.com/pin/471892867179252289/
http://brickset.com/sets/year-1985
https://www.buildwithchrome.com/builder

Later, when | had my first computer (a Commodore 64) | found that the same way of thinking
worked in programming too: you can go bottom-up and play with the basic commands to see what
they do and mean, but at the same time you can think of something complete you want to achieve
and break it apart in a top-down fashion, until you can re-build it.

In this case | want to remake Nitrome’s Rust Bucket
(https://play.google.com/store/apps/details?id=com.nitrome.rustbucket&hl=en) or Turnament
(http://www.nitrome.com/games/turnament ) or a game that feels like that.

s
ll"“l

1
ETEEn
EEEE EEEE

=w I'IlI-
l
- ---

mansnns P

2

e (E
T T et

Turnament snapshot Rust Bucket snapshot

Reverse engineer a game

| have to start simpler, to be able to grasp what the game is actually doing. Also | need to start
playing the game with a different goal in mind: not to win, but to test it, to uncover what the
programmers and game designers put in the game, its rules, the way enemies moves and the subtle
balance between what my character can do and the way the level is designed to be difficult but
winnable.

First of all: Rust Bucket is a turn-based game, which means that nothing happens while you think
about your next move. It is very much like chess, where you move and then the opponent (here the
rules of the game) move. Each enemy moves in a different way, and the timing is a very important
part of the game.

My remake will be called something funny that is also a pun on the original name, for example:
Oxidized Pot (or OP for short).

The language: Java
| want to use Java for this project, but it could also be any other object-oriented programming
language. For a theoretical introduction to Java just google it. As for the reverse engineering of



https://play.google.com/store/apps/details?id=com.nitrome.rustbucket&hl=en
http://www.nitrome.com/games/turnament

robots with LEGO, | think | will get deeper understanding of my tools as | need it to solve the
problems that arise in the projects.

| still need the equivalent of my LEGO drawer, which in programming is an IDE (Integrated
Development Environment) and for Java a classic, free one is NetBeans (see https://netbeans.org/).
When | download NetBeans | get a program to edit, compile and run and debug my programs, but
also a Java Virtual Machine, compiler and other Java tools that are needed to be able to run my

programs. These are my digital construction blocks and the tools required to express myself and
realize my reverse engineering dreams (and perhaps even create new original games and
applications).

The first time that | worked with an IDE like NetBeans | found it a bit weird and even simple things
like opening an existing project or running my code was not that easy. To familiarize myself with new
tools | find it useful to walk through a tutorial or 2. So after installing NetBeans | would probably take
a quick look at a tutorial like this one: https://netbeans.org/kb/docs/java/quickstart.html .

It shows how to create a new project, and how to run it. Another tutorial that covers more or less
the same topics is: http://docs.oracle.com/javase/tutorial/getStarted/cupojava/netbeans.html

from Java's official documentation (a good place to look for Java-related material).



https://netbeans.org/
https://netbeans.org/kb/docs/java/quickstart.html
http://docs.oracle.com/javase/tutorial/getStarted/cupojava/netbeans.html

[CHAPTER 2] First challenge: find out how the original game works
Here | am in the same position as a scientist in front of an unknown gadget or phenomenon. | know
that Rust Bucket works, | can play with it, but do | understand how it works?

| don’t want to just play, | want to be able to re-make the game. So | need to understand how to re-
create it without a computer. If | can do that, make the game a board game, | can surely teach my
computer to hold the board and the pieces for me later on. And | also need to identify the rules of
the game so that | perfectly simulate a game in the board game version.

With a game like Rust Bucket as the starting point, the board game version is going to be relatively
easy because all works in steps already. The same exercise would be more complex for say a game
like Super Mario Bros. (by Nintendo), but as for the LEGO super robots, start simple then redesign
until satisfied! Also a great analysis already exists at the Rust Bucket Wiki
(http://nitrome.wikia.com/wiki/Endless Mode (Rust Bucket) ), so | know how to call the pieces of

the game.

Another trick to simplify is to think only to a portion of the game, for example focus on a single line.
Even like this many interesting things can happen in the game, and it makes my life easier when
defining my Oxidized Pot board game.

Cutting a single line out of a level in Rust Bucket
[source http.//toucharcade.com/2016/01/28/rust-bucket-update/ ]

Good, the next question is: how can | reason about the board game? | need to be able to quickly
sketch a situation and find out the consequences. For example | can imagine that the player’s
character (aka the hero) being near the exit with a pot to block the way, so that the only think the
player needs to do to win is to smash the pot and walk into the exit... but how can | visualize/sketch
this situation? (also considering that | am very VERY poor at drawing?!)



http://nitrome.wikia.com/wiki/Endless_Mode_(Rust_Bucket)
http://toucharcade.com/2016/01/28/rust-bucket-update/

| can make up a notation and write the level down!

Wall-Empty-Hero-Pot-Empty-Exit

= e L

Wall Empty space Hero Empty space Exit stairs

And because | want to have a quick way to scribble these single-line “levels” down, | will abbreviate
the notation to something like:

WEHPEX

In this way a sequence of characters (in programming that is called a string) is my representation of
the situation in which the game is. And to reason about moves in the game, | can just write down a
sequence of strings, like this:

WEHPEX Then the player moves right
WEHEEX Pot brakes. Player moves right again
WEEHEX Right

WEEEHX Right

WEEEEH Player wins

This is great: | have a notation to think about that is the situation of the game (in programming
terms the state) and | can also quickly reason on a sequence of situations, as they might progress
while | play my board game.

| can now express rules about what the game should and should not do. For example: when the hero
‘H” moves he leaves an empty space on is old position. But if the ‘H” wants to move on a character ‘P’
in my string, which represents a pot, the pot breaks and ‘H’ does not actually move for that turn. |
need to have a representation for the state of the game before | can express rules.

Now | can now use a Java program to print the situation my board game is in and | can print
sequences on the screen to give the impression that the situation is changing over time. | open
NetBeans and create a Java project, call it “Oxidized Pot” and write the following:




public class OxidizePot {

public static wvoid main(Scring[] args) {
String statel = "¢ ;
String state2 =
String statel =

String stated
String states

Player wins

System.cut.println(statel); BUILD SUCCESSFUL (total time: 0 seconds)
System.cout.println(state);
System.out.println(state3l);
System.out.println(stated):
System.cut.println(statel) s
System.cut.println("Playver wins");
¥
[source: NetBeans project OxidizedPot_v0] Ouput

So it works. It is not interactive (the program does not ask for my input, it just prints the same stuff
each time | run it), but it produces a sequence of snapshots of my game, and that’s a start.

What does the code mean? | basically need to tell Java:
output something

on the screen, where output should be a suitable Java a command; the something part is changeable,
so that | can tell Java to output a text followed by a different text, for example:

output WEHPEX
and then
output WEHEEX
In Java the output instruction is:
System.out.println( something );
So to output the 2 pieces of text as above | have to write:
System.out.println( "WEHPEX" );
System.out.println( "WEHEEX" );

Placing on System.out.println instruction after the other has the effect that the first is executed first
and the second... after that. The way the output instruction is written follows Java’s syntax: typically
a command will have a name (that should be written always in the same way, for Java to understand
which command I'm referring to) and some changeable part, usually written between brackets. In
this case the changeable part is a piece of text and in Java’s syntax that is a sequence of characters
(letters or numbers) written between 2 quotes. Usually Java commands end with a semi-column ;
character, to help Java understand where each command ends and where the next one might start.




For some reasons (what | will discuss later, when the needs arises) in Java | cannot just write my
commands without adding something before and after them. This is why when | create a project in
NetBeans, the IDE kindly writes for me something like:

public class OxidizedPot{
public static void main(String[] args) {
before the place where | will write my commands, and then it adds something like this:
}
}

after. For now | will just regard this as a given fact, the same way that | don't need to have any
deeper understanding of why LEGO bricks have specific sizes and come only in certain shapes. It will
become clearer as | progress and | have better grasp of the relations among my commands and
general Java programming.

It is useful to notice however that whatever these 2 lines mean, the have balanced curly brackets:
when a { opens, there is always one that closes, like this } . This suggests that somehow my code is
sandwiched in between curly brackets. A piece of code written in between an open and closed curly
bracket is called a block in Java. My program consists of a class block that contains a main block, that
contains in turn my actual commands to output some text. And the most important thing | need to
remember for now is that whatever command | write inside the main block will be executed by Java.

In my OxidizedPot_vO project | also use a very important feature of programming languages: |

declare and use variables. It is very much like giving a name to something, to simplify talking about it.
For instance | might want to say: "Look at the male black cat that is currently in a basket near the
window and tell me if it is asleep." And later: "Look at the male black cat that is currently in a basket
near the window and tell me if it has a collar". If many of my questions involve that cat, it would be
more convenient to give it a name, even a made-up one, and use that to speed-up our conversation:
"See that male black cat that is currently in a basket near the window? Let's call it Bob.

Can you tell me if Bob is asleep?

Can you tell me if Bob has a collar?"

Later | might change my mind and decide to call "Bob" a different cat, and it would still make sense
to ask you to check if Bob (whichever cat it is at that moment) is sleeping or not.

In Java terms, a variable has a name (here it would be Bob), a value (in this case the description of
the specific cat | want to talk about) and a type, usually the same as the type of its value (in the cat
example Bob is a cat-type variable, and its value is a cat-type animal). | can always replace a value
with a variable in my Java commands, provided the type of the variable matches that of the value. So
if it is correct to write a command like this:

System.out.println( "WEHPEX" ) ;
then it is also correct to replace the text (a value of type String, in Java) with a String-type variable:

aaa = "WEHPEX";



System.out.println( aaa );

and in this case Java will not output the text "aaa" but the value of the variable aaa, which is set to
the string "WEHPEX" by the command:

aaa = "WEHPEX";

which means: please Java, give the variable aaa the value expressed by the string “WEHPEX”. This is
called assigning a value to a variable.

Just to make my life more annoying, Java requires that | declare a variable before | use it, so | have
to specify that aaa is not a number or another type of variable, but actually a String-type variable,
that will be able to have a String-type value. In Java | do this in the following way:

String aaa,

which declares a variable with name aaa, of type String. The name of the variable is of course up to
me, the programmer, and it will in most cases be more meaningful than aaa. Putting it all together, |
can declare a variable, then put a value in it, output its value, change the value to a new one and
output that one as well:

String aaa,

aaa = "WEHPEX";
System.out.println( aaa );
aaa = "WEHEEX";

System.out.println( aaa );

| must remember to declare my variable exactly once: in fact | cannot use a variable that | did not
declare, but when a variable is declared its type is fixed and Java will not allow me to change it later
in the program, so re-declaring a variable is also considered an error by Java. After all if Bob is
supposed to be a cat, | can use the name for different cats, but if | suddenly decide that Bob is a
tractor our conversation will rapidly become very confused. So: declaration must be done exactly
once for each variable, however putting a value in the variable (aka assigning a value) can be done as
many times as needed.

Another way to think about a variable is as a box that can contain different things at different times.
Also, in Java | can define as many variables as | need, and the values of these variables are stored in
the memory of my computer. Of course the more boxes | use, the more space they will take up in
the memory (but no worries, modern computers have very large memories).

Apart from strings, in Java | can work with numbers. For example | can declare a variable of type int
(which stands for integer or whole numbers) and use it to perform calculations (like finding out the
area of a square, given how long its side is):

int side;,

side = 10,



int square;,
square = side * side;

System.out.println( square );

this program makes Java put the whole number 10 in the variable side, then Java computes the
result of 10 times 10 and places the result in the variable square. Finally, Java outputs 100, which is
the final value of my variable square. In this case | chose my variable names to help me read the
code. Even if | did not use int-type variables in project OxidizedPot_v0, | will need both numbers and
strings in the development of my game Oxidized Pot.

[Alternative ways]

Perhaps the notation | am using to represent the state of my OP game is not visually very pleasing. |
could have done it in a different way, like shown in project OxidizedPot_v0_1. | also renamed the
variables to show that they can be totally arbitrary.

[Exercises]

1.

Starting from this situation (game state):

WEEHPEPPEXEW

write down the sequence of states until the player victory. Then change the code of project
OxidizedPot_vO0 so that it writes all the steps you found.

Starting from this situation (game state):

WPXEEPPHEPW

write down a sequence of states in which the player breaks as many pots as possible before
finally reaching the X and winning. Change the code of project OxidizedPot_vO0 so that it
writes all the steps you found.

Perhaps the idea | had to change the notation in project OxidizedPot_v0_1 was not that
good after all. Find another notation to represent the state of the game, one that is readable
and better looking for you, and change the code to in project OxidizedPot_v0_1 to print the
sequence of states according to your notation.

Change the code in project OxidizedPot_vO0 so that the program still prints the same
sequence of strings, but using only 1 variable.



[CHAPTER 3] Oxidized Pot must be playable - moving the hero

The next thing | must have: the game has to be playable, interactive, not just a sequence of strings
printed on the screen. The code below is taken from the OxidizedPot v1 project, and shows a
possible way to let the player decide in which direction the H should move (left or right).

public class OxidizedPot {

int heroPos = 3;

WEEHEEPEX

System.cut.println (map) ; Type & or d (to move left or right), then Enter
System.cut.println("Type a or d to move left or right), then Enter™):;
Scanner in = new Scanner (System.in); WEEEHEREX
String s = in.nextline(): BUILD SUCCESSFUL (total time: 1 second)
if (s.egquals("z"})}{
map = map.substring(0,heroPos-1) +
nHE" 4+
map.substring (heroPos+l);
heroPos = heroPos-1;
i EEHEEDE
it (s.equals("a7)) 1 WEEHEEPEX
1 (s.equ - Type a or d (to move left or right), then Enter
map = map.substring(0,heroPos) + d
"EH" + WEHEEEPEX

map.substring (heroPos+2) ;
BUILD SUCCESSFUL (total time: 1 second)

heroPos = heroPos+l;
}

Svstem.cut.println (map) ;
System.out.println();

[source: NetBeans project OxidizedPot_v1]

A comment about comments

It is sometimes a good idea to take down few notes while (re)designing something. For example
when | was building my LEGO super-robots | had a hard time keeping a record of what the robots
looked like. Sometimes | would have to cannibalize the LEGO bricks from one version of a robot to
the next, and that made it difficult to remember how each version actually looked like. | tried
sketching simple diagrams and writing comments on them, to help me remember how | solved
certain problems when building a particular version of a robot. It was annoying and time consuming
(I wanted to build robots and play with them, not write notes), but it helped a bit in keeping track of
my robots' development.

In programming | can do the same thing, but the good news is that | don't need to write on
something else: Java allows me to write my comments directly in between the lines of my code.
The question then is: if | write stuff that is not Java code in the middle of a program, how will Java
react to it when | try to run the code? Usually Java (the Java compiler in fact) is VERY picky about
syntax, so | might expect trouble... But in fact there is a simple solution, which is also very standard
in most programming languages. Just sandwich my comments between some special symbols that
tell Java not to look at the comments as code. Smart. It's a bit like air quotes.




A

L ... some comment...

[hand - source https.//en.wikipedia.org/wiki/Air_quotes ]

In Java a comment starts with /* and ends with */ . The comment can continue on multiple lines.
When | only have a short comment that takes no more than 1 line | can use this instead // . The code
of project OxidizedPot_v1 shows a couple of single-line comments.

Read player input

The first thing | need is a way to tell my program:
“ask the player what he/she wants to do, and depending on what the player says, do it”.
In code, that becomes something like the following:
someVariable = input

which means: Java please pause the program, wait for the player to input some text, then place the
inputted text into a variable (above called someVariable). This is the logical way | might expect things
would work... but in Java | need to prepare the ground to read user input, with the following line of
code:

Scanner in = new Scanner (System.in) ;

| have to write it precisely as it is, just once in the beginning of my code, and after that | can read
input from the player as many times as | want. The following code for example:

String a;
a = in.nextLine() ;

System.out.println( a );

written in the main block of the program, reads anything that the player types (followed by ENTER),
sets that into the variable a (which has type String) and after that it outputs the text, so that the
player can see what he/she wrote.

A final note on the Scanner. Java requires that | add the following line before my class block, so at
the beginning of the program:



https://en.wikipedia.org/wiki/Air_quotes

import java.util.Scanner;

what it means is that Java needs to find the Scanner file (because | did not write the Scanner myself,
but I'm borrowing it from other programmers that added it in the standard set of programs that are
shipped with Java) and enables me to use Scanner to read player input.

Change a string

Now that | have a way to read player input, | need to find a way to change the string representing
the state of the game from "WEEHEEPEX" to "WEHEEEPEX" if the player moves to the left, and
from "WEEHEEPEX" to "WEEEHEPEX" if the player moves to the right. But these 2 rules (call
them movelLeft and moveRight) should not just work with the specific string "WEEHEEPEX",
instead they should work wherever the H is.

Better to consider 1 rule at the time. | start with moveleft. To represent the H moving left | could:

e find where the H character is in the string -> "WEEHEEPEX" the H is the 4" character
e cutthestringin 3 pieces: -> "WE" "EH" "EEPEX"

e change the central part so that the H moves left -> "WE" "HE" "EEPEX"

e and finally, put the 3 pieces back together -> "WEHEEEPEX"

and it is done.

In Java there is an operation that works on strings and that makes a copy of a part of a string (called
substring). There is also another operation that can glue together 2 strings one after the other to
form a longer one (called concatenation). By using these operations | can explain to Java how to do
the steps needed for my moveleft rule.

String map = "WEEHEEPEX";
int heroPos = 3;

map = map.substring (0, heroPos-1) +
"HEH +
map.substring (heroPos+1) ;

heroPos = heroPos-1;

System.out.println( map );

An interesting fact about Java strings is that the 4™ character has in fact index 3. In the string “abc”
for example the character a is at position 1 but has index 0, and c is at position 3 but has index 2.
And because indexes start from 0, the H character in the map string has index 3. Concatenation of
strings is just +, so “ab”+”cd” gives “abcd” as result. The substring operation is a bit more complex
to use. For example:

System.out.println( "abcd".substring(3) ),

will output d , because substring(3) means "create a new string, copy all characters from the original
string starting from the character with index 3, and add all other characters until the end of the
original string". Substring can also cut a portion of a string out and create a copy, as in this example:



System.out.println( "abcd".substring(2,4) )

will output cd , because "abcd".substring(2,4) tells Java to create a copy of "abcd", starting from the
character at index 2 and ending at index 4, so that gives c and d.

A little note about this perhaps weird assignment:
heroPos = heroPos-1;

What is the meaning of that? | have to remember that an assignment is just a way to give a value to
a variable, the one that appears to the left of the = sign (in this case heroPos). So here what I'm
telling Java is to:

e take the value that is currently in the variable heroPos (which is 3 in my particular program)

e subtract 1 to it (which gives a value of 2)

e and place the newly calculated value into the variable to the left of the equals sign (that in
this case happens to be the same variable!)

the result is that the value inside the variable heroPos is changed from 3 to 2. This makes sense in
my program because | want to represent that my character moves left, from 4th position in the
string to 3" (so from index 3 to index 2).

The rule to moveRight is implemented in a similar way, but mirrored, as shown in project
OxidizedPot_v1.

What if... ? Aka doing something only when needed

| have now a trick to read player input, and | worked out how to implement my 2 movement rules.
Now the problem is that Java should know when to apply the moveleft or the moveRight,
depending on the player input.

What | need is a way to tell Java that if the player types something, say a, the H should move left,
and if the player types something else, like d, the H should move right. What | need to express is the
idea that:

if playerInput is equal to a then moveleft

if playerInput is equal to d then moveRight
The Java command for if is in fact just if.

String s = in.nextLine();

if ( s.equals("a") ){

// ... do the moveleft stuff



An if command has 2 parts: a head and a body. The head is a test that can be true or false, and the
body is just a block containing other commands. The cool thing is that the program will automatically
decide whether to execute the commands that in body of the if, on the condition that the test is true
(in fact the if command is called conditional statement in programming terms).

When | write an if in Java | have to remember that the test must be sandwiched in between 2 round
brackets: it is because of Java's syntax.

OK, but what if the test is false? If the player types d, then the string s will have value "d", and
s.equals("a") will be false, because it is not true that "d".equals("a") . Then the body of the if will not
be executed and the program will simply continue with the next command after the if.

IFs can be used in many other situations. For example | could have a variable that remembers the
player's score as a whole number (aka integer). Then the following code:

int score = 100;
System.out.println( "let me see your score..." );
if ( score<=10 ){

System.out.println( "you suck" );

}

if ( score>80 ){

System.out.println( "well done" );

}
if ( score>=100 ){
System.out.println( "terrific!" );

}

System.out.println( "... and that's all I have to say" );
will output:

let me see your score...

well done

terrific!

... and that's all I have to say

which means that both the second and third IF executed their bodies, since both their tests were
true. But depending on the value of the score variable it might output something completely
different.

| can sandwich this code in a main block, inside a class block, and change the first line to:



int score = 5;
to see what happens... It should output:
let me see your score...
you suck
... and that's all | have to say

which is correct because if score is less or equals than 10, the code should output "you suck". The
other tests are:

e score >80, which means "is score greater than 80?"
e and: score >= 100, meaning "is score greater or equal than 100?"

Note: a and d are typically used in games to move left-right because of the position of the keys in a
QWERTY keyboard that reminds of the way the arrow keys are placed on the right of the keyboard.

Prink - FPase
F1 R R H FR B (Ff R F9 F0 F1 F12 éja: -ccttr‘ s i T I
~ ! @ B E s & ( ) e | Page tamm | 7
. 1 2 3 4 B 6 7 & 9 [} = \ = e e L =
Page 7 E B
*SPRPwlElRr [T ¥ uli ori } Decte =ns DO 1 1
P
= a 5 8
o N S RE BEN REN BN BEN REN NS -— =
< 1 o
i Z X C VvV B N M : 5 kit t - B -
an AR A G o -— 1 —_ ! -
s el

Layout of wasd keys with respect to arrow keys
[source https://en.wikipedia.org/wiki/QWERTY ]

Reflections
The code in project OxidizedPot_v1 has a typical structure that is found in many programs:

. initialization of program state
. input
. calculations and/or decisions

Sw N

. output

Step 1 means variables are declared and values assigned to them, so that the state of the program
represents some situation | want to work with.

Step 2 is about letting the user/player input some data: this step makes the program interactive.
Without user input | can only perform calculations or execute commands in a fixed way.

In step 3 some calculations are performed, and typically that involves changing the values of the
variables (aka the state of the program) according to some formulas. Step 3 can also involve
conditional commands, things that | might do or not depending on the input and the values of my
variables. Typically this step is implemented using IFs.

Finally, step 4 allows the program to show the results (or possibly its current state) to the user.


https://en.wikipedia.org/wiki/QWERTY

[Alternative ways]

Instead of cutting and putting back together my string map in the same line of code, | can use
temporary variables (aka variables that exist only to help me doing something in a specific portion of
my code and then | will not use them again). Project OxidizedPot_v1_1 shows this approach.

[Exercises]

1. Create a copy of project OxidizedPot_v1 (call it perhaps OxidizedPot_v1_2) so that the game
prints the level in this way:

"WE ]-[ EEPEX"

both before and after player's input is processed. The "H" representing the hero has been replaced
by the string " ]-[ ". A possible execution of the program could be that the situation is printed on
screen, then the player moves left and the new situation (aka game state) is printed again, like this:

WE ]-[ EEPEX
-> player input: "a"
W ]-[ EEEPEX

Suggestion: you might want to use a couple of variables to hold portions of the original map string,
to help you print the new version of the game situation (check out project OxidizedPot_v1_1).

1.b. Practice working with string by printing the first 3 characters of the map string, followed in a
new line by the last 3 characters. Add the code to achieve that at the end of the code in your
OxidizedPot_v1_2 project. The result should be something like (assuming the player moved left):

WEH
PEX

2. Make a copy of project OxidizedPot_v1, call it OxidizedPot_v1_3. In the very beginning of the
main block, declare a int variable called score and set its value to 0. Now add an IF command in
such a way that if the player types "+", the score changes to 100. The value of the variable score
should be printed on screen each time the map is printed, to help the player keeping track of
his/her score. It should be possible to run the game, type + and get a score of 100 without
moving the "H".



[CHAPTER 4] Oxidized Pot must be playable - smashing pots and
winning



